

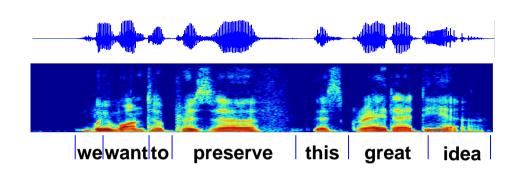
Loria & Université de Lorraine, Colloquium, Nancy, France 27-January-2017

Human Language Technology and Machine Learning: From Bayes Decison Theory to Deep Learning

Hermann Ney Human Language Technology and Pattern Recognition RWTH Aachen University, Aachen, Germany

IEEE Distinguished Lecturer 2016/17

Human Language Technology (HLT)



Speech Recognition

Handwriting Recognition (Text Image Reognition)

we	brant	Yo	preserve	thes	great	idea
we	want	to	preserve	this	great	idea

Machine Translation

wir wollen diese große Idee erhalten

tasks:

- speech recognition
- machine translation
- handwriting recognition (+ sign language,...)

Human Language Technology: Speech and Language

characteristic properties:

- well-defined 'classification' tasks:
 - due to 5000-year history of (written!) language
 - well-defined goal: letters or words (= full forms) of the language
- easy task for humans (in native language!)
- hard task for computers (as the last 50 years have shown!)

unifying view:

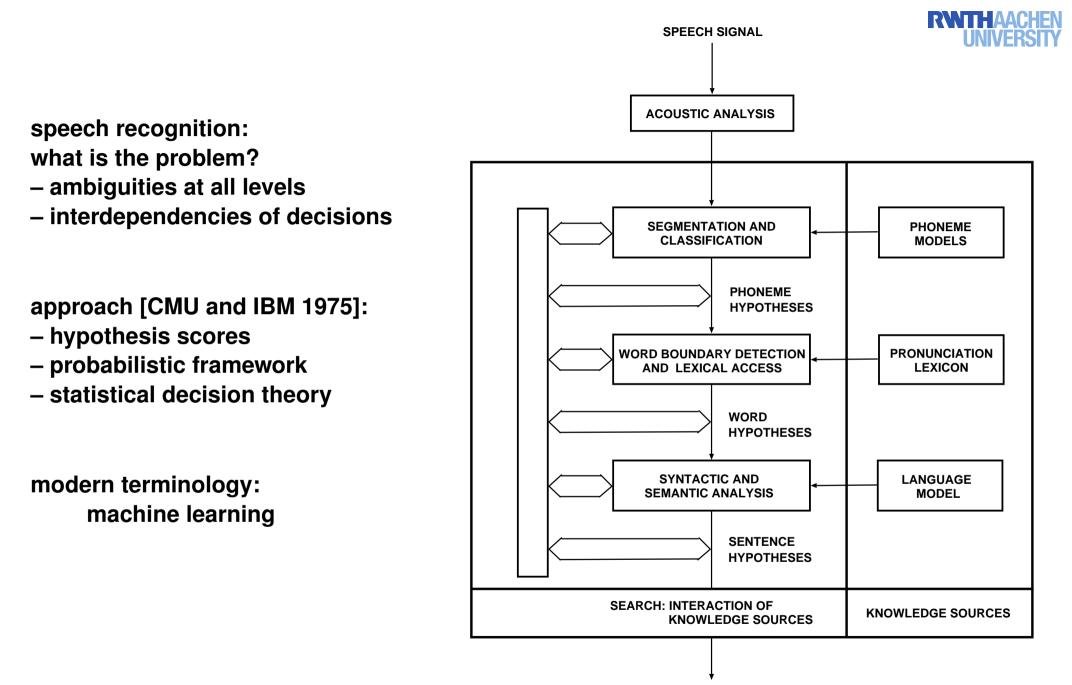
- formal task: input string \rightarrow output string
- output string: string of words/letters in a natural language
- models of context and dependencies: strings in input and output
 - within input and output string
 - across input and output string

Projects

activities of my team (RWTH, Philips until 1993) in large-scale joint projects:

- SPICOS 1984-1989: speech recognition und understanding
 - conditions: 1000 words, continuous speech, speaker dependent
 - funded by German BMBF: Siemens, Philips, German universities
- Verbmobil 1993-2000: funded by German BMBF
 - domain: appointment scheduling, recognition and translation, German-English, limited vocabulary (8.000 words)
 - large project: 10 million DM per year, about 25 partners
 - German partners: Daimler, Philips, Siemens, DFKI, KIT, RWTH, U Stuttgart, ...
- TC-STAR 2004-2007: funded by EU
 - recognition and translation of speeches given in EU parliament
 - first research system for SPEECH TRANSLATION on real-life data
 - partners: UPC Barcelona, RWTH, CNRS Paris, KIT Karlsruhe, IBM-US Research, ...
- GALE 2005-2011: funded by US DARPA
 - recognition, translation and understanding for Chinese and Arabic
 - largest project ever on HLT: 40 million USD per year, about 30 partners
 - US partners: BBN, IBM, SRI, CMU, Stanford U, Columbia U, UW, USCLA, ...
 - EU partners: CNRS Paris, U Cambridge, RWTH

- BOLT 2011-2015: funded by US DARPA
 - follow-up to GALE
 - emphasis on colloquial language for Arabic and Chinese
- QUAERO 2008-2013: funded by OSEO France
 - recognition and translation of European languages, more colloquial speech, handwriting recognition
 - French partners (23): Thomson, France Telecom, Bertin, Systran, CNRS, INRIA, universities,...
 - German Partners (2): KIT, RWTH
- BABEL 2012-2016: funded by US IARPA
 - key word spotting with noisy and low-resource training data
 - rapid development for new languages (e.g. within 48 hours)
- EU projects 2012-2014: EU-Bridge, TransLectures emphasis on recognition and translation of lectures (academic, TED, ...)



RECOGNIZED SENTENCE

- two strings: input $x_1^T := x_1...x_m...x_T$ and output $c_1^N := c_1...c_n...c_N$ with a probabilistic dependence: $p(c_1^N | x_1^T)$
- performance measure or loss (error) function: $L[\tilde{c}_1^{\tilde{N}}, c_1^N]$ between true output $\tilde{c}_1^{\tilde{N}}$ and hypothesized output c_1^N
- Bayes decision rule minimizes expected loss:

$$x_1^T o \hat{c}_1^{\hat{N}}(x_1^T) \ := \ rg\min_{N,c_1^N} \Big\{ \sum_{ ilde{N}, ilde{c}_1^{ ilde{N}}} p(ilde{c}_1^{ ilde{N}} | x_1^T) \cdot L[ilde{c}_1^{ ilde{N}}, c_1^N] \Big\}$$

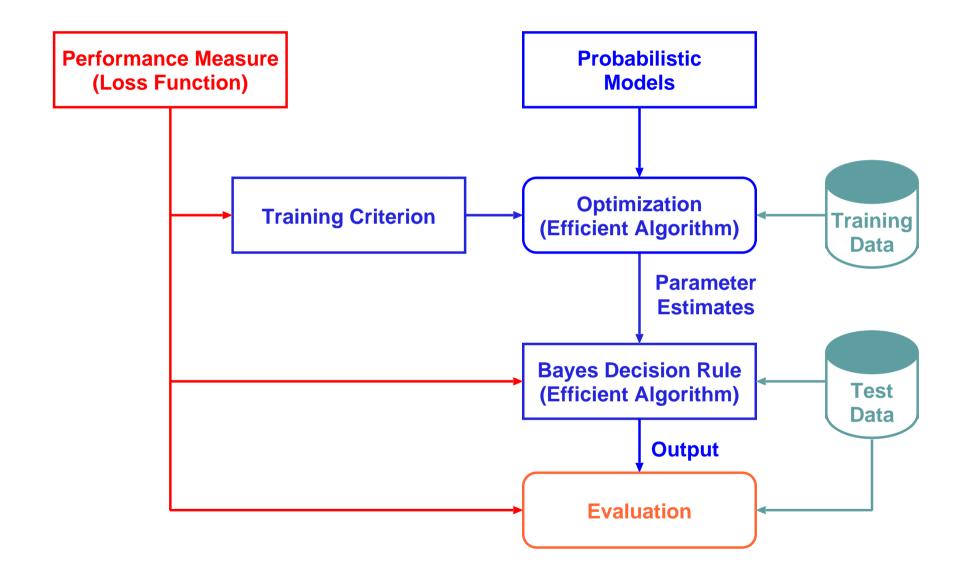
simplified rule (minimum string error): $x_1^T o \hat{c}_1^{\hat{N}}(x_1^T) := \arg \max_{N, c_1^N} \left\{ p(c_1^N | x_1^T) \right\}$

• from true to model distribution: separation of language model $p(c_1^N)$

$$p(c_1^N | x_1^T) = p(c_1^N) \cdot p(x_1^T | c_1^N) \left/ \left. p(x_1^T) \right.
ight.$$

- advantage: huge amounts of training data without annotation
- extension: log-linear modelling

7



four ingredients:

- performance measure: error measure (e.g. edit distance) we have to decide how to judge the quality of the system output
- probabilistic models with suitable structures (*machine learning*): to capture the dependencies within and between input and output strings
 - elementary observations: Gaussian mixtures, log-linear models, support vector machines (SVM), artificial neural nets (ANN), ...
 - strings: n-gram Markov chains, CRF, Hidden Markov models (HMM), recurrent neural nets (RNN), LSTM RNN, ANN-based models of attention, ...
- training criterion (*machine learning*):
 - to learn the free model parameters from examples
 - ideally should be linked to performance criterion (end-to-end training)
 - might result in complex mathematical optimization (efficient algorithms!)
 - extreme situation: number of free parameters vs. observations
- Bayes decision rule:

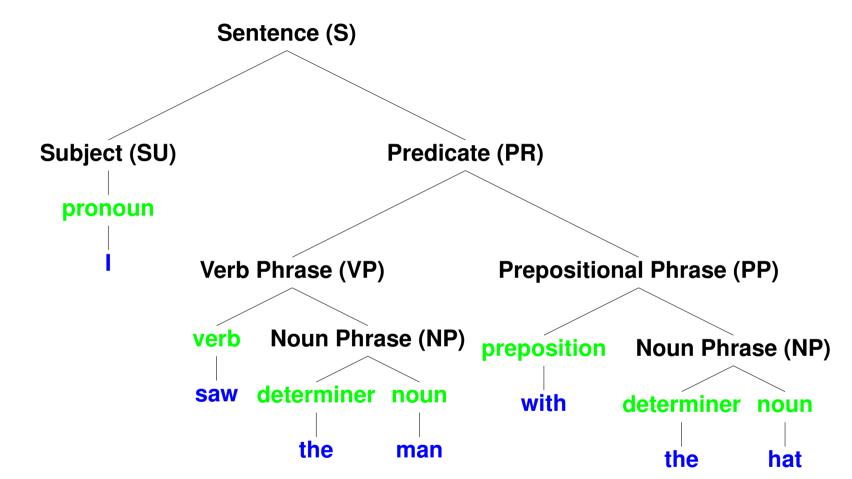
to generate the output word sequence

- combinatorial problem (efficient algorithms)
- should exploit structure of models

examples: dynamic programming and beam search, A* and heuristic search, ...

- steady increase of challenges:
 - vocabulary size: 10 digits ... 1000 ... 10.000 ... 500.000 words
 - speaking style: read speech ... colloquial/spontaneous speech
- steady improvement of statistical methods: HMM, Gaussians and mixtures, statistical trigram language model, adaptation methods, artificial neural nets, ...
- 1985-93: criticism about statistical approach
 - too many parameters and saturation effect
 - ... 'will never work for large vocabularies' ...
- remedy(?) by rule-based approach:
 - language models (text): linguistic grammars and structures
 - phoneme models (speech): acoustic-phonetic expert systems
 - limited success for various reasons: huge manual effort is required! problem of coverage and consistency of rules
- evaluations: experimental tests:
 - the same evaluation criterion on the same test data
 - direct comparison of algorithms and systems

• principle:



11

extensions along many dimensions

dichotomy until 1990:

- speech: signals \rightarrow statistics (engineers, industrial labs)
- text: symbols \rightarrow rules (linguists, universities)

use of statistics has been controversial in text processing (symbolic processing and computational linguistics):

• Chomsky 1969:

... the notion 'probability of a sentence' is an entirely useless one, under any known interpretation of this term.

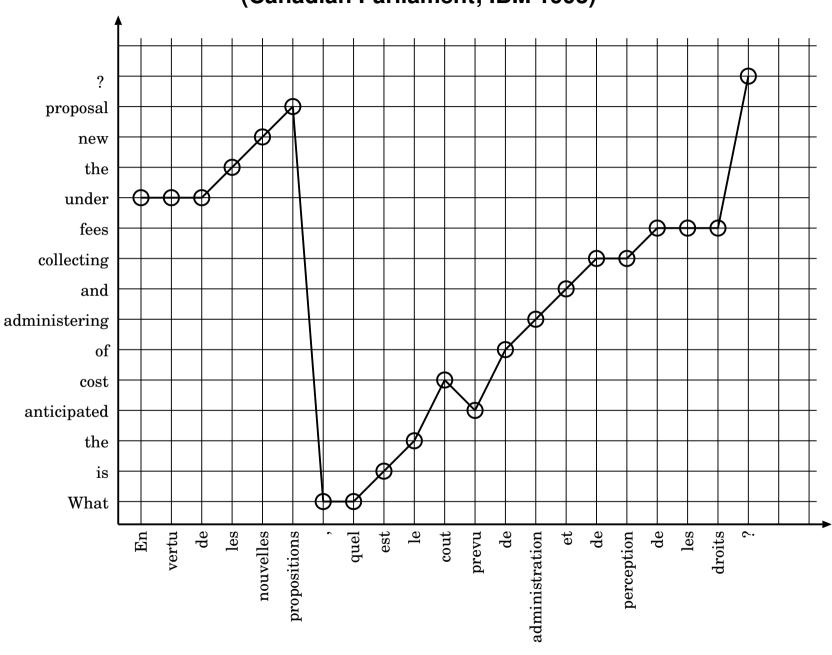
 was considered to be true by most experts in (rule-based) human language technology and artificial intelligence

history of statistical approach to MT:

• 1989-94: pioneering work at IBM Research key people (R. Mercer, P. Brown) left for *Renaissance Technologies* (hedge fund)

12

- since 1995: only a few teams advocated statistical MT: RWTH, UP Valencia, HKUST Hong Kong, CMU Pittsburgh
- around 2004: from singularity to mainstream in MT
 F. Och (and more RWTH PhD students) joined Google
- 2008 service Google Translate

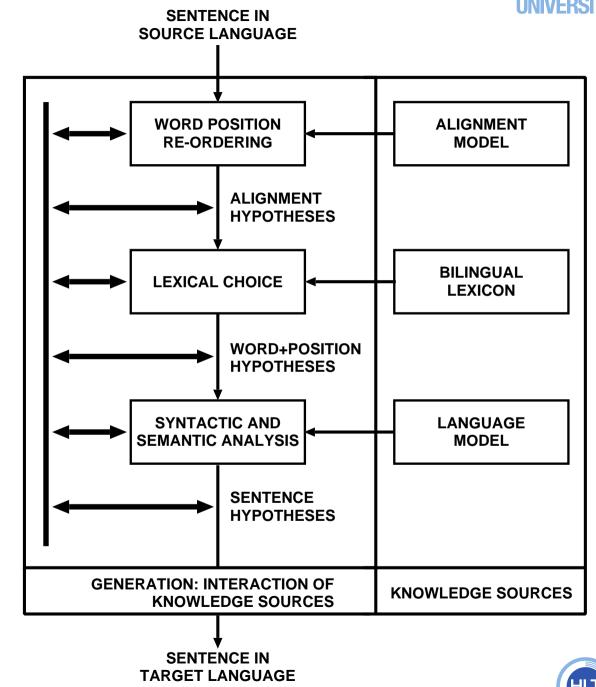


13

Hidden Markov Models for MT: Word Alignments (Canadian Parliament; IBM 1993)

illustration: machine translation

- interaction between three models (or knowledge sources):
 - alignment model p(A|E)
 - lexicon model p(E|F, A)
 - language model p(E)
- handle interdependences, ambiguities and conflicts by Bayes decision rule as for speech recognition



14

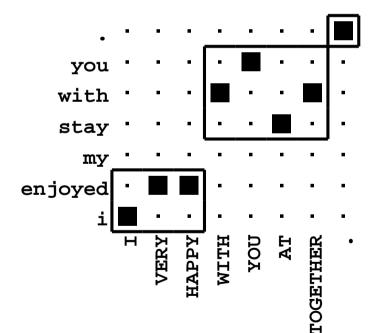
From Single Words to Word Groups (Phrases) (RWTH 1998-2002)

source sentence 我很高兴和你在一起.

gloss notation I VERY HAPPY WITH YOU AT TOGETHER.

target sentence I enjoyed my stay with you .

best alignment for source \rightarrow target language:

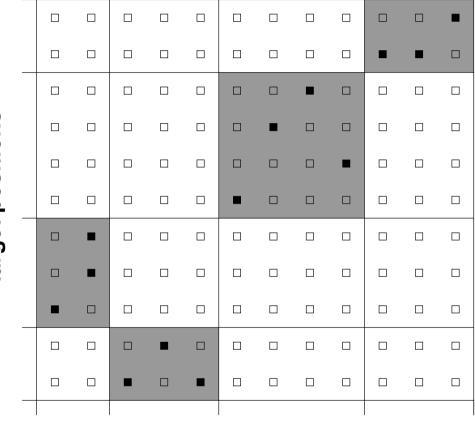


From Words to Phrases

phrase-based approach:

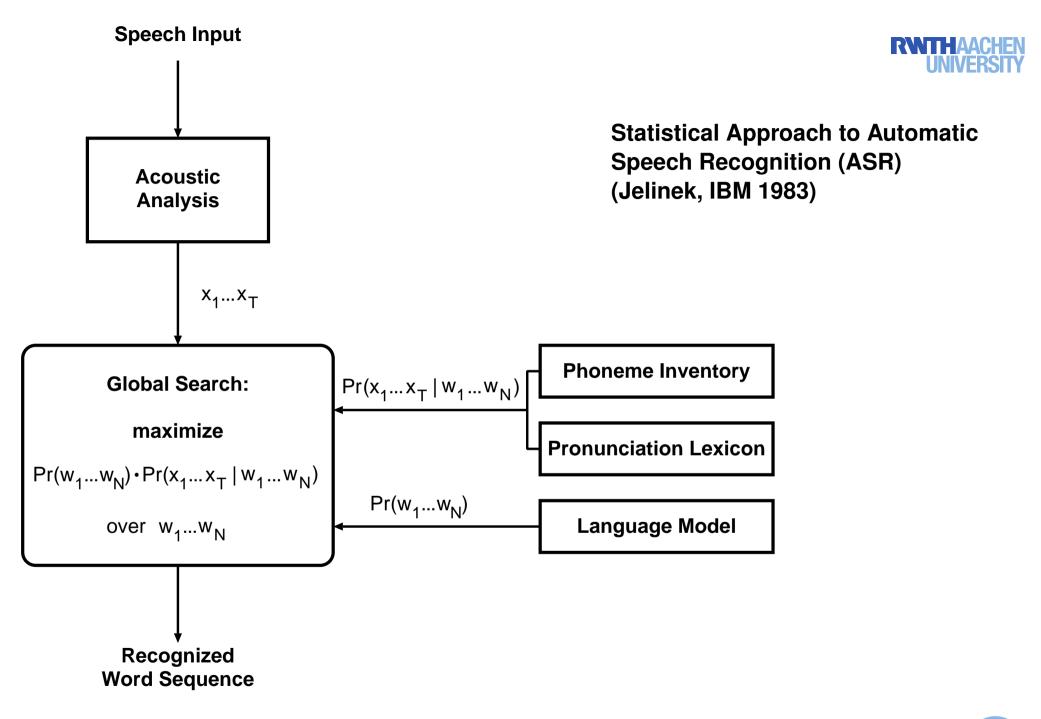
- training: extraction

 of phrase pairs (= two-dim. 'blocks')
 after alignment/lexicon
 training
- translation process: phrases are the smallest units

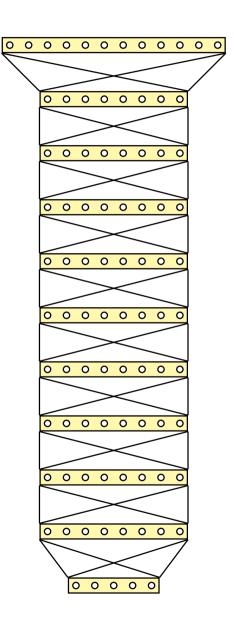


target positions

source positions



Artificial Neural Networks (ANN): What is Different Now after 25 Years?



important property: ANN outputs are probability estimates

today: huge improvements by ANN:

- image object recognition
- speech recognition
- machine translation ?

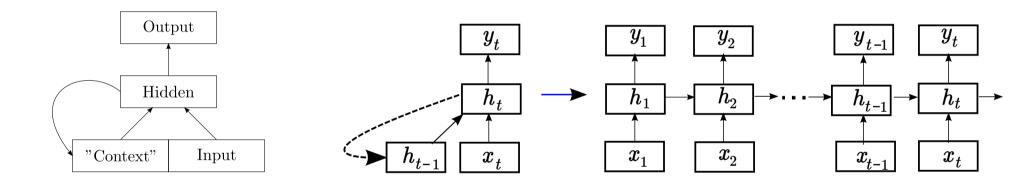
comparison for ASR: today vs. 1989-1994:

- number of hidden layers: 10 (or more) rather than 2-3
- number of output nodes: 5000 (or more) rather than 50
- optimization strategy: practical experience and heuristics, e.g. layer-by-layer pretraining
- computation power: much higher

principle for string processing over time t = 1, ..., T:

- introduce a memory (or context) component to keep track of history

– result: there are two types of input: memory h_{t-1} and observation x_t



extensions:

- bidirectional variant [Schuster & Paliwal 1997]
- feedback of output labels
- long short-term memory [Hochreiter & Schmidhuber 97; Gers & Schraudolph⁺ 02]

hybrid approach:

replace emission probability of an hidden Markov model by ANN ouput

three types of hidden Markov models:

- GMM: Gaussian mixture model
- MLP: deep multi-layer perceptron
- LSTM-RNN: recurrent neural network with long short-term memory

experimental results for QUAERO English 2011:

approach	layers	WER[%]
conventional: best GMM	_	30.2
hybrid: best MLP	9	20.3
hybrid: best LSTM-RNN	6	17.5

remarks:

- comparative evaluations in QUAERO 2011: competitive results with LIMSI Paris and KIT Karlsruhe
- best improvement over Gaussian mixture models by 40% relative using an LSTM-RNN

goal of language modelling: compute the prior $p(c_1^N)$ of a word sequence c_1^N

– how plausible is this word sequence c_1^N ?

– measure of language model quality: perplexity *PP*, i.e. effective vocabulary size

perplexity PP on test data:

results on QUAERO English (like before):

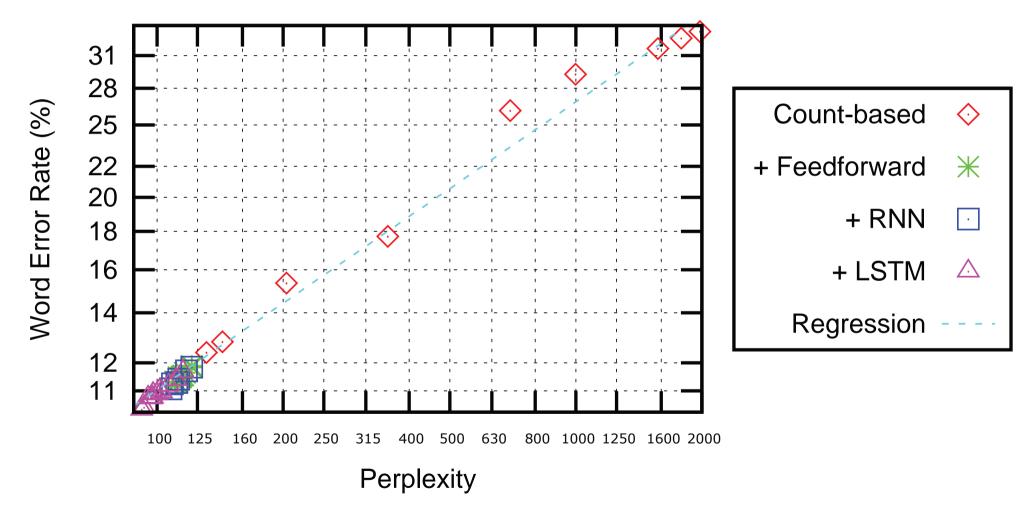
- vocabulary size: 150k words
- training text: 50M words

- test set: 39k words

approach	PP
baseline: count model	163.7
10-gram MLP	136.5
RNN	125.2
LSTM-RNN	107.8
10-gram MLP with 2 layers	130.9
LSTM-RNN with 2 layers	100.5

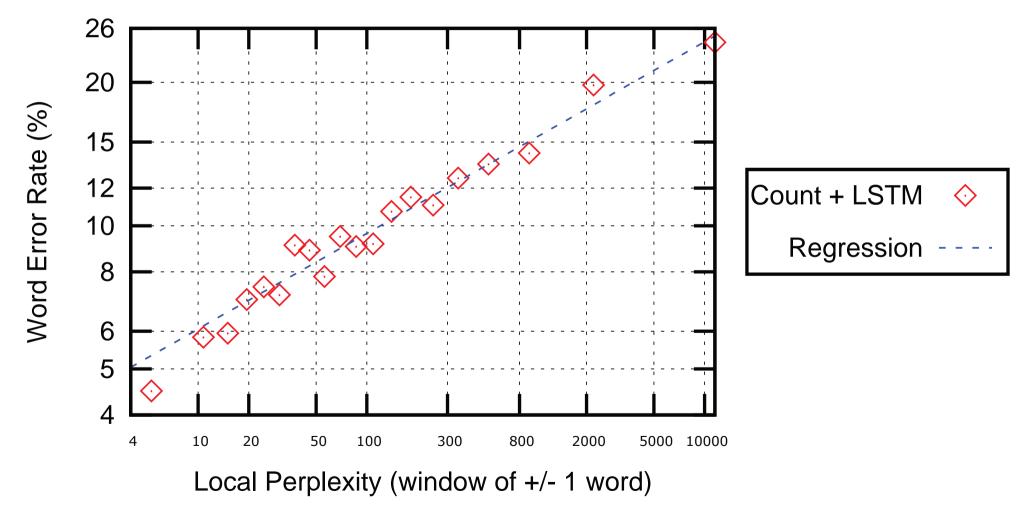
important result: improvement of PP by 40%

empirical power law: $WER = \alpha \cdot PP^{\beta}$



Word Error Rate vs. Local Perplexity (3-word window, 20 bins)

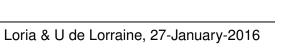
empirical power law: $WER = \alpha \cdot PP^{\beta}$



Human Language Technology: Statistical Approach and Machine Learning

- four key ingredients:
 - choice of performance measure: errors at string, word, phoneme, frame level
 - probabilistic models at these levels and the interaction between these levels
 - training criterion along with an optimization algorithm
 - Bayes decision rule along with an efficient implementation
- about recent work on artificial neural nets (2009-15):
 - they result in significant improvements
 - they provide one more type of probabilistic models
 - they are PART of the statistical approach
- specific future challenges for statistical approach (incl. ANNs) in general:
 - complex mathematical model that is difficult to analyze
 - questions: can we find suitable mathematical approximations with more explicit descriptions of the dependencies and level interactions and of the performance criterion (error rate)?
- specific challenges for ANNs:
 - can the HMM-based alignment mechanism be replaced?
 - can we find ANNs with more explicit probabilistic structures?

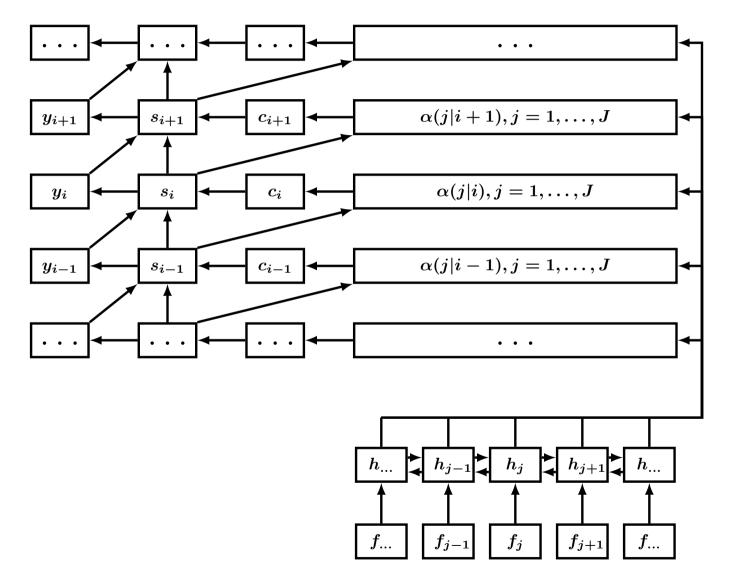
BACK-UP SLIDES



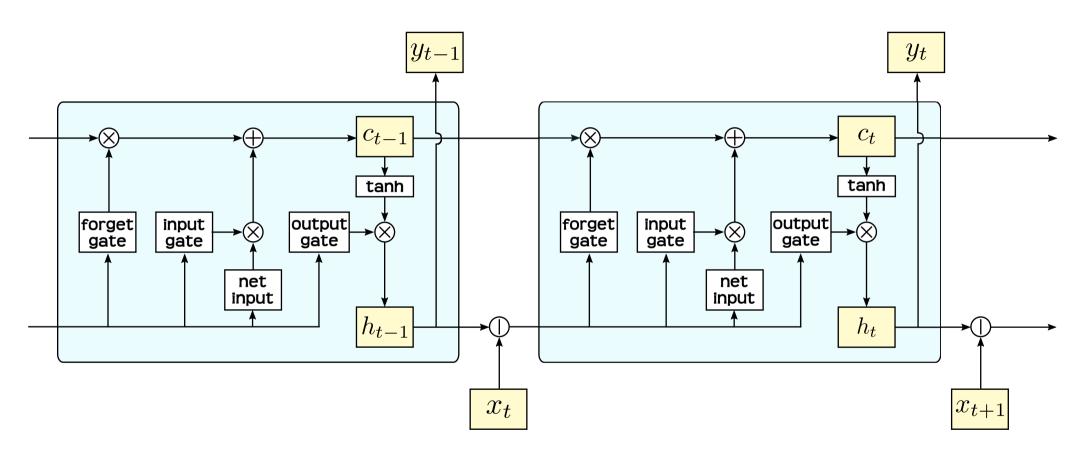
(HLT)

Attention-based NN MT [?]

GRU: gated recurrence unit (similar to LSTM-RNN)



Recurrent Neural Network: Details of Long Short-Term Memory

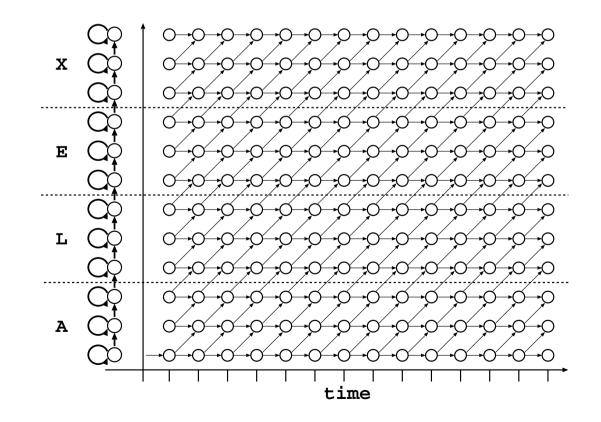


ingredients:

- separate memory vector c_t in addition to h_t
- use of gates to control information flow
- (additional) effect: make backpropagation more robust

Acoustic Modelling: HMM and ANN (CTC: similar [?])

- why HMM? mechanism for time alignment (or dynamic time warping)
- critical bottleneck: emission probability model requires density estimation!
- hybrid approach: replace HMM emission probability by label posterior probabilities,
 - i. e. by ANN output after suitable re-scaling



QUAERO English Eval 2013 (competitive system)

Language Model	PP	Acoustic Model	WER[%]
Count Fourgram	131.2	Gaussian Mixture	19.2
		deep MLP	10.7
		LSTM-RNN	10.4
+ LSTM-RNN	92.0	Gaussian Mixture	16.5
		deep MLP	9.3
		LSTM-RNN	9.3

acoustic models:

- acoustic input features: optimized for model
- sequence discriminative training (MMI/MPE), not (yet) for LSTM-RNN (end-to-end training)

remarks:

- overal improvements by ANNS: 50% relative (same amount of training data!)
- lion's share of improvement: acoustic model

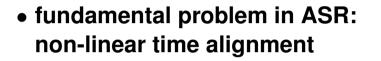
- why a separate language model?
- we need a model to approximate the true posterior distribution $p(w_1^N | x_1^T)$: separation of prior probability $p(w_1^N)$ of word sequence $w_1^N = w_1...w_n...w_N$ in the posterior probability used in Bayes decision rule:

$$p(w_1^N|x_1^T) = rac{p(w_1^N) \cdot p(x_1^T|w_1^N)}{\sum_{ ilde{w}_1^{ ilde{N}}, ilde{N}} p(ilde{w}_1^{ ilde{N}}) \cdot p(x_1^T| ilde{w}_1^{ ilde{N}})}$$

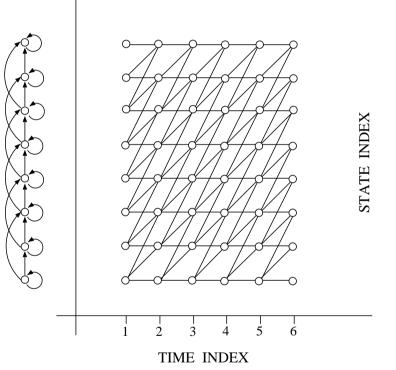
- advantage: huge amounts of training data for $p(w_1^N)$ without annotation
- extension: from generative to log-linear modelling

$$p(w_1^N|x_1^T) = rac{q^lpha(w_1^N) \cdot q^eta(w_1^N|x_1^T)}{\sum_{ ilde{w}_1^{ ilde{N}}, ilde{N}} q^lpha(ilde{w}_1^{ ilde{N}}) \cdot q^eta(ilde{w}_1^{ ilde{N}}|x_1^T)}$$

- note about prior $p(w_1^N)$ or $q(w_1^N)$: pure SYMBOLIC processing
- ANN: help here too!



- Hidden Markov Model:
 - linear chain of states s = 1, ..., S
 - transitions: forward, loop and skip
- trellis:
 - unfold HMM over time t = 1, ..., T
 - path: state sequence $s_1^T = s_1...s_t...s_T$
 - observations: $x_1^T = x_1...x_t...x_T$



The acoustic model p(X|W) provides the link between sentence hypothesis W and observations sequence $X = x_1^T = x_1...x_t...x_T$:

• acoustic probability $p(x_1^T|W)$ using hidden state sequences s_1^T :

$$p(x_1^T|W) = \sum_{s_1^T} p(x_1^T, s_1^T|W) = \sum_{s_1^T} \prod_t [p(s_t|s_{t-1}, W) \cdot p(x_t|s_t, W)]$$

- two types of distributions:
 - transition probability p(s|s', W): not important
 - emission probability $p(x_t|s, W)$: key quantity realized by GMM: Gaussian mixtures models (trained by EM algorithm)
- phonetic labels (allophones, sub-phones): $(s, W) \rightarrow lpha = lpha_{sW}$

 $p(x_t|s,W) = p(x_t|lpha_{sW})$

typical approach: phoneme models in triphone context: decision trees (CART) for finding equivalence classes

- refinements:
 - augmented feature vector: context window around position t
 - subsequent LDA (linear discriminant analysis)

THE END

H. Ney: HLT and ML